Image

High-Flying Pilots at Increased Risk of Brain Lesions

Aug. 21, 2013
A new study finds that pilots have four times the number of brain lesions as non-pilots.

A new study suggests that pilots who fly at high altitudes may be at an increased risk for brain lesions, and that the lesions are found throughout the brain, not just the areas associated with normal aging.

For the study – which is published in the August 20 print issue of Neurology, the medical journal of the American Academy of Neurology  – 102 U-2 United States Air Force pilots and 91 non-pilots between the ages of 26 and 50 underwent MRI brain scans. The scans measured the amount of white matter hyperintensities, or tiny brain lesions associated with memory decline in other neurological diseases. The groups were matched for age, education and health factors.

“Pilots who fly at altitudes above 18,000 feet are at risk for decompression sickness, a condition where gas or atmospheric pressure reaches lower levels than those within body tissues and forms bubbles,” said study author Stephen McGuire, MD, with the University of Texas in San Antonio, the U.S Air Force School of Aerospace Medicine and a Fellow of the American Academy of Neurology. “The risk for decompression sickness among Air Force pilots has tripled from 2006, probably due to more frequent and longer periods of exposure for pilots. To date however, we have been unable to demonstrate any permanent clinical neurocognitive or memory decline.”

Symptoms affecting the brain that sometimes accompany decompression sickness include slowed thought processes, confusion, unresponsiveness and permanent memory loss. The study found that pilots had nearly four times the volume and three times the number of brain lesions as non-pilots. The results were the same whether or not the pilots had a history of symptoms of decompression sickness.

The research also found that while the lesions in non-pilots were mainly found in the frontal white matter, as occurs in normal aging, lesions in the pilots were evenly distributed throughout the brain.

“These results may be valuable in assessing risk for occupations that include high-altitude mountain climbing, deep sea diving and high-altitude flying,” McGuire said.

The study was supported by the United States Air Force Surgeon General.

About the Author

Sandy Smith

Sandy Smith is the former content director of EHS Today, and is currently the EHSQ content & community lead at Intelex Technologies Inc. She has written about occupational safety and health and environmental issues since 1990.

Sponsored Recommendations

Navigating ESG Risk in Your Supply Chain

Sept. 26, 2024
Discover the role of ESG in supply chains, from reducing carbon footprints to complying with new regulations and enhancing long-term business value.

Understanding ESG Risks in the Supply Chain

Sept. 26, 2024
Understand the critical role of ESG in supply chains, the risks for hiring companies, and the competitive edge suppliers gain by prioritizing sustainability.

Best Practices for Managing Subcontractor Risk

Sept. 26, 2024
Discover how to effectively manage subcontractor risk with unified strategies, enhanced oversight, and clear communication for consistent safety and compliance.

Building a Culture of Support: Suicide Prevention and Mental Health in the Workplace

Sept. 26, 2024
Find best practices for setting up an organizational culture that promotes positive mental health and suicide prevention.

Voice your opinion!

To join the conversation, and become an exclusive member of EHS Today, create an account today!