Last year, two workers died from asphyxiation while repairing leaks in a manhole. In an all too frequent narrative, the second worker died after he went down to rescue the first worker.

The tragedy again exposed the need for real-time information gathering prior to confined space entry and in taking appropriate action based on an understanding of atmospheric conditions.

In 2015, OSHA passed a confined space rule that offers additional protection to construction workers. In filling what it identified as a vital gap, OSHA estimates that as many 800 construction workers a year will be protected from serious injuries. The new ruling signals that today, more than ever, regulatory bodies have the worker's back.

In step with the regulatory advances, instrumentation manufacturers are creating new wireless monitoring tools that make compliance easy, instrument operation nearly automatic and critical data accessible in real time across the enterprise.

The latest advancement in confined space monitoring is wireless gas monitoring systems that operate across multiple communication platforms. Wireless gas monitors provide the advantage of offering additional insight into atmospheric readings to more people, such as safety or plant managers who are located offsite.

Readings from the wireless monitor worn by the worker in a confined space can be relayed not only to the required attendant, but instantaneously to any part of the operation via Wi-Fi or a dedicated mesh radio network. Environmental readings from the confined space can be viewed on a laptop or smart phone with an Internet connection, and automatic emails or SMS text messages can be sent to key stakeholders who are not on the software viewing platform, ensuring rapid response to critical events.  

What's more, in the event of a failure between mobile communications, the wireless monitoring system offers a greater degree of safety redundancy, or backup protection.  The wireless system is protected on a secure network and may be able to switch from Wi-Fi to a dedicated mesh wireless protocol when a signal is weak. This particularly can be important to operations where work is performed remotely by a small staff or lone worker – something common in the mid-stream oil and gas industry, maritime industry, utilities and other industries.

Maritime Industry: A Special Cause for Concern

According to OSHA, the rate of confined space injury in a shipyard environment is twice that of the general construction industry. Extra care must be taken by workers, safety managers, operation personnel and emergency responders to ensure a confined space is free from substances that can be deadly.  

The risk of confined space entry injury or death in marine vessels is very real. Readings from a wireless gas monitor transmitted to offsite safety managers can provide a much-needed, additional set of eyes to assess risk or mitigate an incident.

In the Pacific Northwest, an integrated tug and barge had a close call. Initial indications of a lower explosive limit did not indicate a hazard, but workers were picking up signals on their wireless photo ionization detectors (PIDs) indicating dangerous substances. As it turned out, diesel fuel from the tug had somehow migrated to a confined space in the barge. They were about to do hot work in the barge when the wireless PID detected the fuel's presence.

Fortunately, they used advanced gas detection technology to identify a potential problem that otherwise would not have been detected. The wireless PID operator's recognition and alert to the crew prevented a potential major casualty.  

An industrial hygienist or other competent person usually is required by OSHA and the U.S. Coast Guard to certify a space for access and entry in a shipyard or repair facility.  However, that alone does not alleviate the prevalent risks. Once that person certifies the space as safe and leaves, there's no telling what can be uncovered later.

In addition, a crew may be doing minor work in a tank or confined space during the ship's routine time in operation. Without gas detection technology or proper safety training, a deadly accident could occur.

That's what happened at a Texas repair facility when employees working an overnight shift moved spray painting equipment and portable lighting equipment inside a barge to continue a painting operation. An earlier shift had already worked in the space for 10 hours.  

The previous shift had not adequately ventilated the space; the confined space was not monitored for dangerous gas levels; and the portable lighting equipment they were using was not explosion-proof. A spark from an unknown source ignited the flammable paint vapors and both employees were killed.

A designated competent shipyard employee should have visually inspected the space and its equipment. He also should have measured its oxygen content and lower explosive limit with a calibrated and reliable gas detector. If he had, he could have discovered the dangerous atmosphere, evacuated the space and stopped work immediately.

In an incident at a Louisiana shipyard, two workers were cleaning marine vessel tanks with solvents. Workers were directed to ventilate the space and dilute it with an air hose. One worker used an oxygen hose that ran into the space for three hours. The other worker entered the space while smoking a cigarette, which he rubbed out with his foot on the deck.  This caused a ball of fire to ignite and the worker's pant leg caught fire, badly burning him. The employee died from the burns.  

In the examples above, the workers never should have used an air hose, nor should they have used oxygen to ventilate the space. No competent person tested the space for air quality and flammability with a calibrated gas detector. And the employee should not have been smoking.   

Incidents such as these show the continuous need for and inherent value of safety training, as well as the need to use the most appropriate gas detection tools, technology and trained personnel on hand to monitor conditions and protect against deadly incidents. After the industrial hygienist leaves the scene, a wireless gas monitoring system with PID in place is a great way to reinforce the idea of safety first.